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Nonassociative Geometry of Special Relativity

Larissa Sbitneva1

Received October 12, 1999

The nonassociative axiomatics of the relativistic law of composition of velocities
in special relativity is presented. For the first time the canomical unary operations
are considered.

1. LOOP

Definition 1.1 (Loop). A set Q together with a binary operation (?) and
a two-sided neutral element ε P Q, ^Q, ?, ε&, is said to be a loop if a ? x 5
b, y ? a 5 b are uniquely solvable and ∀q P Q, q ? ε 5 ε ? q 5 q.

Let c be the light velocity in vacuum, and Vc be the velocity space of
special relativity,

Vc 5 {
›

w P R3; c . 0, .
›

w . , c},
›

x ,
›

y P Vc , g ›
x 5 F1 2 1.

›
x .
c 2

2G21/2

The inner and vector products in R3 are (
›

x ?
›

y ) and
›

x 3
›

y . The relativistic
law of composition of velocities has the form (Fok, 1955)

›
x M1

›
y 5

›
x 1

›
y

1 1 (1/c2)(
›

x ?
›

y )
1

1
c2

g ›
x

(1 1 g ›
x )

›
x 3 [

›
x 3

›
y ]

1 1 (1/c2)(
›

x ?
›

y )
(1)

Vc {
›

x ,
›

y ⇒
›

x M1
›

y P Vc

The law (1) is nonassociative and noncommutative (Nesterov, 1989; Ungar,
1990, 1994, 1997; Sabinin and Miheev, 1993; Sabinin and Nesterov, 1997;
Sabinin et al., 1998). We present an axiomatic description of the law (1) for
c 5 1 in the frames of smooth loops and odules.
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Proposition 1.2. For the law of composition of relativistic three-velocities
(1) the equations

›
a M1

›
x 5

›
b ,

›
y M1

›
a 5

›
b are uniquely solvable. The follow-

ing identities hold:
›

0 M1
›

x 5
›

x M1
›

0 5
›

x existence of two-sided neutral
›

0
›

x M1 [
›

y M1 (
›

x M1
›
z )] 5 [

›
x M1 (

›
y M1

›
x )] M1

›
z left Bol property (2)

(
›

x M1
›

y ) M1 (
›

x M1
›

y ) 5
›

x M1 (
›

y M1 (
›

y M1
›

x )) left Bruck property (3)

Remark 1.3. A loop with the left Bol and left Bruck properties is said
to be a left Bol–Bruck loop. Therefore ^V1, M1,

›
0) is a left Bol–Bruck loop.

This loop is analytic, since the law (1) is analytic.

Proposition 1.4 (Sabinin, 1981, 1991, 1999). Any C3-smooth local left
Bol–Bruck loop uniquely defines a symmetric space and vice versa.

Proposition 1.5. Let ,
›

a denote the unique solution of
›

a M1
›

w 5
›

0 .
For the composition (1), we have

,(
›

x M1
›

y ) 5 (,
›

x ) M1 (,
›

y ) automorphic inverse property (4)

l(
›

a ,
›

b )(
›

x M1
›

y ) 5 l(
›

a ,
›

b )
›

x M1 l(
›

a ,
›

b )
›

y ) left A-property

L ›
a

›q 5
def ›

a M1
›

q , l(
›

a ,
›

b ) 5
def

(L(
›

a M1
›

b ))
21+ L ›

a + L ›
b (5)

Remark 1.6 (Sabinin and Sbitneva, 1994; Sabinin, 1999). The left A-
property (5) is valid for any left Bol–Bruck loop. For a left Bol loop, the
left Bruck property (3) is equivalent to the automorphic inverse property (4).

2. ODULE

Definition 2.1 (Unary operations). Let
›

x P V1, t P R and tanh stand for
hyperbolic tangent. The unary operations are

[t]
›

x 5
def

(tanh t tanh21 .
›

x .)
›

x

.
›

x .
,

›
x Þ

›
0 , [t]

›
0 5

def ›
0 , [R]V1 5 V1

Main Theorem 2.2. Let t, u P R and
›

x P V1. Then

[t 1 u]
›

x 5 [t]
›

x M1 [u]
›

x left monoassociativity (6)

[tu]
›

x 5 [t]([u]
›

x ) left pseudoassociativity (7)

[1R]
›

x 5
›

x unitarity (8)

[t]
›

x M1 ([u]
›

x M1
›

y ) 5 [t 1 u]
›

x M1
›

y left monoalternativity
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Definition 2.3 (Odule; Sabinin, 1981, 1999). A loop with unary opera-
tions with properties (6)–(8) is called an R-odule. An odule with the left Bol
and left Bruck properties (2) and (3) is said to be a Bol–Bruck odule.

The loop ^V1, M1 ,
›

0 & with unary operations, ∀t P R, x → [t]x, x P V1,
is the Bol–Bruck R-odule ^V1, M1 ,

›
0 , ([t])tPR&.

Proposition 2.4 (Sabinin, 1981, 1991, 1999). Any C 3-smooth local left
Bol–Bruck loop ^Q, ?, ε& can be uniquely equipped with smooth unary
operations t P R, x ° [t]x, such that ^Q, ?, ε, ([t])tPR& is a left Bol–Bruck odule.

Any left Bol–Bruck odule ^Q, ?, ε, ([t])tPR& is left monoalternative,

[t]x ? ([u]x ? y) 5 [t 1 u]x ? y

When is a C 3-smooth Bol–Bruck odule isomorphic to the left Bol–Bruck
odule of relativistic three-velocities?

Proposition 2.5 (Sabinin, 1981, 1991, 1999). Let ^Q, ?, ε, ([t])tPR be a
global smooth left Bol–Bruck odule which is not a vector space and there
exists, at least locally, near ε, an operation (x, y) ° x 1 y such that ^Q, 1,
ε, R, [,]& is a (local) space of dimension 3. If the following pseudolinear
identity holds

x ? y 5 [a(x, y)]x 1 [b(x, y)]y a(x, y), b(x, y) P R, ∀xy P Q (9)

then ^Q, ?, ε, ([t])tPR& up to automorphism is the Bol–Bruck R-odule V1.

Proof. A slight alternation of the Proof in Theorem 2 in Sabinin and
Miheev (1993). n

Remark 2.6. The law (1) satisfies the pseudolinear identity (9).

Question 2.7. Is it possible to construct a three-dimensional formalism
of special relativity on the base of the above nonassociative odule? If so,
then one may try to generalize such a construction to general relativity.

3. COMPLEX MODEL

There are other models for the addition of relativistic velocities. The
two-dimensional complex model is D 5 {x P C; .x. , 1}, ^D, M1, 0C&,

x M1 y 5
x 1 y

1 1 x*y
(x 5 a 1 ib; x* 5 a 2 ib; a, b P R) (10)

The model ^D, M1, 0C& is an analytic Bol–Bruck loop. This model has been
used by Ungar (1990, 1994, 1997) to axiomatize the relativistic law of addition
of three-velocities. A number of axiomatics have been suggested for (10).
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The best known is the gyrogroup (Ungar, 1990, 1994, 1997). Using this
concept, Ungar discovered many properties of the relativistic addition of
velocities. Sabinin (1995) and Sabinin et al. (1998) showed that a gyrogroup
is a left Bol–Bruck loop. Also, the close relation of left Bol–Bruck loops
with hyperbolic geometry were established.

We have considered for the first time the R-odule, which allows us to
give an algebraic presentation of special relativity in the frame of nonassocia-
tive algebra.
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